The natural world has been irreversibly changed by human actions and this has led to long term trends towards increasing scarcity of natural resources and environmental degradation. Both of these trends are closely interlinked and will pose significant challenges over the next few decades, requiring large-scale, international action to avoid the worst-case scenario.

Human activities have resulted in air pollution, habitat destruction, soil erosion, desertification, ocean acidification and many other changes that are causing significant stress to ecosystems. With a growing global population, demand for fresh water and arable land for agriculture are expected to increase in the future. The development of new technologies (such as smart farming) will be essential to overcome some of these challenges. However, many such technologies, including clean energy technologies, require critical minerals that are also in short supply. Substantial efforts in terms of both mitigation (reduction of carbon emissions) and adaptation (changing behaviors, consumption patterns, resource management and more) will be required to maintain a level of ecosystem services needed for human well-being.

Environment trends

natural resource scarcity

As the effects of climate change continue to impact the globe, precious natural resources like fresh water, arable land and minerals are expected to become increasingly scarce, with significant implications for agriculture and food security as well as the production of many new innovative technologies. According to the US National Intelligence Council, “nearly all of the Earth’s systems are undergoing natural and human-induced stresses outpacing national and international environmental protection efforts”.[1] The World Economic Forum identifies human overexploitation and/or mismanagement as key drivers of the scarcity of natural resources.[2] Resource scarcity, whether of water, land or minerals, may also be a driver of conflict, particularly where economic and political issues create barriers to access to natural resources.[3​,4]​​​​​

Water, land, and consequences for food production

Water is already scarce and is likely to become even more scarce in future. Only 3% of the world’s water is freshwater, and much of this is is not readily accessible due to factors that include remote location, political boundaries, economics, and purity. The UN Food and Agricultural Organization estimates that 1.8 billion people worldwide will face water scarcity by 2025 and 5.2 billion are expected to face water stress. By 2050, they estimate only 60% of the water needed will be available.[5] Although climate change may promote glacier melting that could lead to increased flows of water, higher temperatures are also expected to increase water loss due to evaporation.[4] An increasing demand for water will make the extraction/production (e.g., through desalination) of fresh water more energy intensive, and is likely to drive up costs for access to water.[3] Industrial water pollution, inadequate water management and non-compliance with water sharing agreements and treaty provisions may lead to tensions over access to water sources.[1]

The same forces that are expected to impact water scarcity (climate change, population growth, urbanization, economic development, and poor management) will also impact the availability of arable land for farming. This is a serious challenge when projections estimate that average levels of food production will have to increase by around 50% by 2050 (from a 2012 baseline) in order to meet the needs of the world’s population.[4Indeed, it is impossible to separate out the issues of water and land scarcity as each affects the other in a significant way. For example, around 70% of world water consumption goes to agriculture, agriculture will be responsible for a large part of the increased demand for water in future,[6] and current intensive farming techniques are linked to water pollution along with soil degradation and pest resistance.[4Water scarcity and other consequences of climate change such as volatile weather events and sea-level rise will, on the one hand, reduce the amount of land available for developing new agricultural areas and, on the other hand, lead to reduced agricultural production. The resulting food insecurity is predicted to have a disproportionate effect on developing countries, with some predicting that “Africa could face a near double-digit reduction in crop yields and production volumes over the next decade, as well as rising food prices by similar margins”.[7]

Technology will need to play a major role in overcoming natural resource scarcity and improving agricultural productivity.[4] ‘Smart farming’ and techniques such as hydroponics and vertical farming will be key. Smart farming involves the use of digital technologies – e.g., unmanned machinery, robots, sensors, drones, big data, and advanced analytics – to be able to analyze the individual needs of specific fields, crops, or animals.[8] This kind of precision agriculture is more environmentally sensitive and minimizes water and electricity use whilst maximizing the productivity of the land. Hydroponics (growing plants in mineral solutions instead of soil) and vertical farming (growing crops in vertically stacked layers) both reduce the need for land to grow certain crops and make it more practical to farm them in urban environments.[4]

Critical minerals and consequences for emerging technologies and the energy transition

Scarcity issues also apply to lesser-known natural resources like critical minerals – rare metals such as lithium, tellurium and rare earth metals that are used for batteries, solar panels, and various electronic devices. Demand for these product types will only increase in coming decades as more people join the middle class and purchase consumer electronics such as smartphones, and as the global community steps up efforts to cut greenhouse gas emissions and transition to cleaner sources of energy such as electric vehicles (which require a lot of lithium) and solar power. As this demand grows, pressure on these limited resources will be significant. With the bulk of known critical mineral deposits in a small number of countries, political and supply chain issues could cause significant challenges in the future.[9]

Scarcity of water, land or minerals will provide both challenges and opportunities for businesses, who may have less readily available resources for production, but who may see potential market opportunities develop for sustainable and eco-friendly production.[10]





Farming fit, farming smart
ISO has put together a group of world experts to apply smart tech to the challenges of sustainably feeding a growing planet.
Calculating the value of the environment with new ISO standard
How does an organization value the dependencies it has on the environment? There’s a lot of information on what makes smarter sustainable strategies, but very little data. Now a new ISO standard provides …
A standard for water reuse brings hope for water scarcity
By 2030, water scarcity will have displaced between 24 and 700 million people, according to UN Water, the United Nations coordinating body on water issues. World Water Day is focusing on Sustainable Development …
Managing a precious resource
Why do we need to manage global water resources? According to environmental scientist Dr Debbie Chapman, our health and well-being depend on it – and the payback is tremendous. Here, Dr Chapman explains …
Precision farming takes off
As the technology continues to evolve, the number of users of, and uses for, drones has risen to new heights. The need for an International Standard is clear, but what’s the link with farming?
Putting waste to good use
Wastewater irrigation is an economical and high-in-nutrients option for even the poorest farmers. But, if untreated, the consequences for our health and the environment can be catastrophic. Discover the …
  • ISO/TMBG/SAG_CRMI ISO Strategic Advisry Group on Critical minerals
  • ISO/TMBG/SAG SF Smart Farming

threatened ecosystems

Ecosystems worldwide are at increasing risk of long-term changes and damage. Changes to plant life cycles and animal behaviour are observed in both land and marine ecosystems.[11] Threats from pollution, habitat destruction, deforestation, over-exploitation, changes in biodiversity, seabed mining and ocean acidification are all interfering with the natural functioning of the earth’s ecosystems[3,11] alongside the ongoing threat of global warming.[4]

Carbon emission reduction is a critical response to these threats and, if ambitious emissions reduction targets are achieved, offers some hope for the world’s ecosystems.[4]

Air pollution continues to increase, especially in rapidly growing cities, and will pose significant health risks into the future.[11By 2035, air pollution may be the top cause of environmentally related deaths worldwide.[1Air quality is predicted to become ‘the most significant indicator with regards to quality of life, happiness and other indices’.[3] As growing numbers of people live in urban areas, air pollution can be expected to increase and will especially impact on urban populations.[3] Already, more than 80% of people living in cities are exposed to air pollution that exceeds safe limits.[1]

Signs of hope in relation to air pollution may appear in the form of increased public awareness, cleaner transport options, retrofitted buildings, and improved urban design.[3]

Soil erosion and desertification will increasingly threaten agricultural and habitable land,[11] particularly where deforestation and unsustainable farming practices continue.



SDG 13
Climate Action
Take urgent action to combat climate change and its impacts
Ones to watch
Game-changing standards in the race against climate change.
International Day of Forests
Healthy forests for a healthy planet.
Biodiversity high on standards agenda
A new expert committee on biodiversity just formed.
Putting sustainability at the heart of the standards agenda
A new ISO guide will help ensure climate change issues are addressed in every new standard.
Food, feed, fibre
Getting back to basics on Desertification and Drought Day, the UNCCD challenges us to rethink how we use the land.
Breathe easy with ISO standards on World Environment Day
There is nothing more precious to life than the air we breathe. This year’s World Environment Day theme is air pollution and ISO has a range of international standards that help to combat it.
New ISO standard to combat land degradation
Our consumption of the earth’s natural reserves has doubled in the last 30 years and a third of the planet’s land is now severely degraded. There is an urgent need to find solutions for land management …


  1. Global trends. Paradox of progress (US National Intelligence Council, 2017)
  2. The global risks report 2021 (World Economic Forum, 2021)
  3. Future outlook. 100 Global trends for 2050 (UAE Ministry of Cabinet Affairs and the Future, 2017)
  4. Global strategic trends. The future starts today (UK Ministry of Defense, 2018)
  5. Beyond the noise. The megatrends of tomorrow's world (Deloitte, 2017)
  6. Global trends and the future of Latin America. Why and how Latin America should think about the future (Inter-American Dialogue, 2016)
  7. Foresight Africa. Top priorities for the continent 2020-2030 (Brookings Institute, 2020)
  8. Future technology for prosperity. Horizon scanning by Europe's technology leaders (EU Commission, 2019)
  9. Critical minerals scarcity could threaten renewable energy future (Stanford University, 2018)
  10. Global trends 2020. Understanding complexity (Ipsos, 2020)
  11. Asia pacific megatrends 2040 (Commonwealth Scientific and Industrial Research Organisation, 2019)