THE ROLE OF STANDARDS IN BIOMEDICAL DEVICE TESTING: A SURGEON’S PERSPECTIVE

Joshua J. Jacobs, MD
Professor of Orthopaedic Surgery
Rush Medical College
Chicago, IL USA
Perspectives

- Standards Committee Chairman (ASTM F04)
- Biomedical Researcher
- Orthopaedic Surgeon
Medical Technological Advancements

- Rapidly accelerating
- Sources of improved understanding of disease
- Sources of improved treatment modalities
Medical Technological Advancements

- Novel materials
- Computer-assisted surgery
- Growth factors (BMP, TGF-β)
- Tissue Engineering
- Minimally invasive surgery
- Molecular-based diagnostics
- Implantable sensors/nanotechnology
Medical Technological Advancements

- Many have unproven clinical outcomes
- Financial stress on health care systems
 - Clinical Research
 - Reimbursement
- Challenge for regulators
- Adverse impact on patient safety?
PATIENT SAFETY
IOM Reports

- *To Err is Human, 1999*
- *Crossing the Quality Chasm, 2001*

Nationwide Movement

- Public - National Patient Safety Foundation
- Private - Leapfrog Group
- Governmental - President: “Top Priority”
To Err is Human
Institute of Medicine Report

Patient Deaths Due to Medical Errors

- “at least 44,000”
- “possibly as high as 98,000”

Figures Imply Medical Errors

- 8th leading cause of death (1977 figures)
- Aids: 16,516
- Breast Cancer: 42,297
- MVA’s: 43,458
How Does the Public Perceive Health Care in the US

- Satisfied with health care: 8% (1 in 12)
- Confidence in getting care in the future:
 - NO: 15% (good health)
 - NO: 24% (Fair or poor health)
How Does the Public Perceive Health Care in the US

- Individual or family member experienced error: 22%
 - 23 million people
- Wrong medication or dose: 16%
 - Serious: 22% (8 million people)

Commonwealth Fund, April 2002
More recent research indicates that 40% of Patients Have Experienced a Medical Error (directly or through a family member or friend).

New England Journal of Medicine, 12/12/02
SIX SIGMA GOAL

To set tolerance levels for defective products/services at fewer than 3.4 defects per million unit opportunities.
Where Does Medicine Fall in This Analysis?

- **Medicine, Generally:** 4 SIGMA
 - 6,210 errors/million events
- **Medications:** 2 SIGMA
 - 308,000 errors/million events
Health Care Error Rate = 1%

Ten Times the Error Rate of Industry
Patient Safety: Medical Devices

- 83.7 Adverse Medical Device Events (AMDE) per 1000 admissions using more extensive modes of surveillance than previous studies.
- For ICD-9 coding-based flags for hospital admission, orthopaedic devices comprised 25%, vascular devices 19%, and dialysis 15%.
- “The high rate of AMDEs suggests that AMDEs are an important patient safety issue…”

Benefits of Standards for Biomedical Engineering Materials and Devices

- Regulatory
- Legal
- Commerce
- Research
- Development
 - Technology Transfer
- Clinical Practice
 - Patient Safety
THE BIOLOGICAL REVOLUTION MEETS ADULT RECONSTRUCTIVE ORTHOPAEDIC SURGERY
NIH Consensus Conference 1994

“Total hip replacement is an option for nearly all patients with diseases of the hip that cause chronic discomfort and significant functional impairment. Most patients have an excellent prognosis for long-term improvement in symptoms and physical function.”
Survivorship

THA

- 9 years 94 - 97%
- 17 years 81- 86%

Swedish Registry 1979 - 1996
Total Hip Arthroplasty

- 1996 - 138,000
 (81,000 F; 57,000 M)
- 2030 (proj.) - 248,000
 (142,000 F; 106,000 M)
- National Center for Health Statistics
Osteolysis and Aseptic Loosening: Etiology

- Mechanical Factors
 - Design
 - Fixation
 - Surgical Technique

- Biological Factors
 - Particulate Load
 - Host Response
 - Anatomic Variability

- Mechanical/Biological Synergy
Osteolysis and Aseptic Loosening: Proposed Solution

REDUCE VOLUMETRIC WEAR

- “Conventional UHMWPE”: 30 - 120 mm³/yr
- Ceramic-on-ceramic bearings: 0.04 mm³/yr
- Metal-on-metal bearings: 6 mm³/yr
- X-linked UHMWPE: 55 mm³/yr
Osteolysis and Aseptic Loosening: Proposed Solution

REDUCE VOLUMETRIC WEAR

Is this sufficient?
PATHOGENESIS
Question: What are the variables that determine the bioreactivity of a particle?

Retrieved UHMWPE Debris

Interleukin-1β Release

The cellular response to particle challenge is size, composition and dose-dependent.
Highly Crosslinked UHMWPE Debris

- Ilgen et al (ORS 2003)
 - Particle size
 - Highly crosslinked 0.11 μm
 - Conventional 0.20 μm
 - Cell response
 - TNF-α, VEGF
 - No difference between highly crosslinked and conventional
Highly Crosslinked UHMWPE Debris

- Ingham et al (ORS 2003)
 - Increased cellular response to highly crosslinked UHMWPE vs. conventional
 - TNF-\(\alpha\)
UHMWPE Debris: Effect of Morphology

- Sieving et al (ORS 2003)
 - Particles of similar area
 - Cell response determined by proliferation assay
 - Order of reactivity (descending)
 - Rough fibrillar > rough round, smooth fibrillar > smooth round
Net Biological Activity

The product of the normalized biological activity ("specific biological activity" of Fisher) per particle and the number of particles of that size, integrated over all size ranges.
Debris From Metal-Metal Bearings
In Vivo Degradation Products

- Particles
- Free metallic ions
- Colloidal organonmetallic complexes
- Inorganic metal salts/oxides
- Organic storage forms (e.g. Hemosiderin)
13 patients with M/M prostheses

In situ 7 - 300 months

TEM

• Most particles < 50 nanometers
• Range: 6 – 834 nanometers
Metal-on-Metal Particles
Willert CORR 1996

- Cr/Co ratio in periprosthetic tissue (~1/2 in alloy)
 - 9:1 (AAS), 5:1 (ICP-MS)
- Suggests a preponderance of corrosion products in the tissue
Differential protein adsorption for CoCr vs. Ti particles

~ 140 kD protein associated with CoCr alloy
Challenges/Opportunities for the 21st Century: Pathogenesis

- Particle characterization
- Composition of adsorbed proteins
- Particle isolation
- Particle fabrication
- “Designer” wear debris
DIAGNOSTICS
Individual Bioreactivity Paradigm: TNF-α Promoter

- TNF-α gene located within major histocompatibility complex
- Several polymorphisms identified inside TNF-α promoter
*TNF*2 allele correlated with enhanced spontaneous and stimulated TNF-α production

Louis et al *Clin Exp Immunol* 1998; 401-406
-238A allele correlated with osteolysis and aseptic loosening

Hypersensitivity Reactions

- 10 – 15% of population have cutaneous metal allergy (Type IV-DTH)
- 25% in patients with TJR
- 50% in patients with failed TJR
Question: Are there systemic markers of prosthetic performance?
Serum Titanium (ng/ml or ppb)

- Subject 1203
- Primary Ti-alloy THR 4
- Control < 2
Serum Titanium > 8 ppb

- > 750 measurements THR and TKR
- Aseptic Loosening
- Multiple Implants
- Accelerated Wear Against CFRP
- PE “Wear-Through”, Including Delaminated Metal-Backed Patellae

Normal THR < 4 ppb; Controls < 2 ppb
Leopold et. al.
J Arthrop 15:938, 2000

- 67 yo Male, cementless TKR 1988
- Excellent function for 10+ years (HSS Knee Score 96 - 100)
- Presented in 1999 with effusion, mild pain with standing
- No palpable or audible crepitus
Leopold et. al.
J Arthrop 15:938, 2000

- X-rays: mild screw lysis, no loosening, skyline view unchanged from pre-op
- Ti levels:
 - 1990 2.4 PPB
 - 1998 5.5 PPB (contralateral TKR in 1992)
 - 1999 536.8 PPB

Well-Functioning MG TKR: 3.34 PPB (<2.1 - 5.28);
Failed Metal-Backed Patella: 135.6 PPB (24.1 - 716.9)
Markers of Bone Turnover and TJR

- Tauber et al. (1989): vitamin D metabolites and implant loosening
- Joering et al. (1993): serum collagen metabolites after THR and TKR
- Schneider et al. (1998): cross-links and implant loosening
- Granchi et al. (1998): serum cytokines and implant loosening
Wilkinson et al: JOR 2003

- Subjects with femoral loosening had higher levels of the bone resorption marker N-telopeptides of type-I collagen
- ? Early diagnosis of osteolysis/loosening
- ? Response to pharmacological treatment of osteolysis
Other Putative Markers of Prosthetic Performance

- Pro-inflammatory cytokines
 - IL-1, IL-6, TNF-α
- Chemokines
 - MCP-1, IL-8
- Matrix metalloproteinases
 - Collagenase, stromelysin
- Osteoclast activators
 - RANKL
- Gene microarrays
Challenges/Opportunities for the 21st Century: Diagnostics

- Develop genetic databases on patients with TJR to correlate performance with genotype.
- Develop reliable preoperative screening tests to dictate material selection in patients undergoing TJR.
- Develop diagnostic tests which are reliable early surrogate markers for prosthetic performance.
THERAPEUTICS
Treatments to Inhibit Osteolysis

- Canine THR Model
 - Controls (n=8)
 - Debris (n=8)
 - Debris + Rx (n=8);
 - Alendronate (Fosamax, 5 mg/day)

Wear debris introduced intra-op

Rx started on post-op day 7

End-point: 24 weeks post-op
Inhibiting Osteolysis

- Alendronate (Fosamax, Merck)
 - (5 mg orally /day)
 - 24 weeks post-op.
Mouse Calvaria Model of Wear Debris Induced Osteolysis

Implant 30mg → 10 days → 2 mM

W, W/o Drug

Plastic Embedding
Trichrome + TRAP

Paraffin Embedding
H&E + Immunohistochemistry

3 μM → Histomorphometry → 40 x 1.67 mM
Drug Efficacy in Preventing Wear Debris-Induced Osteolysis in the Mouse Calvaria Model

<table>
<thead>
<tr>
<th>Drug</th>
<th>Anti-resorptive effects</th>
<th>Anti-osteoclastogenic effects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alendronate¹</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Pentoxifylline¹</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>Celecoxib²</td>
<td>++</td>
<td>++</td>
</tr>
<tr>
<td>Etanercept³</td>
<td>++</td>
<td>+</td>
</tr>
<tr>
<td>RANK:Fc⁴</td>
<td>+++</td>
<td>+++</td>
</tr>
</tbody>
</table>

The expression of procollagen α1[I] mRNA in human osteoblasts

A

<table>
<thead>
<tr>
<th>Coll I</th>
<th>120%</th>
<th>100%</th>
<th>80%</th>
<th>60%</th>
<th>40%</th>
<th>20%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>IL-1β</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL-6</td>
<td></td>
<td></td>
<td>***</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TNF-α</td>
<td></td>
<td></td>
<td></td>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

<table>
<thead>
<tr>
<th>Coll I</th>
<th>150%</th>
<th>100%</th>
<th>50%</th>
<th>0%</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>-</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IGF-I</td>
<td></td>
<td>***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGF-β1</td>
<td></td>
<td></td>
<td>***</td>
<td></td>
</tr>
</tbody>
</table>
Challenges/Opportunities for the 21st Century: Therapeutics

- Establish translational research protocols to determine if putative therapeutic/preventive agents are effective in animal models of TJR
- Establish clinical research protocols to determine if agents effective in animal models are effective in humans
- Develop novel methods of periprosthetic drug delivery, including gene therapy, to minimize systemic impact of treatment
Division I: Resources

- Polymeric Materials
- Metallurgical Materials
- Ceramic Materials
- Composite Materials
- Materials Test Methods
- Biocompatibility Test Methods
- Device Retrieval Analysis
Division II: Orthopaedic Devices

- Osteosynthesis
- Arthroplasty
- Spinal Devices
Division III: Medical/Surgical Devices

- Cardiovascular Standards
- Neurosurgical Standards
- Plastics and Reconstructive Surgery
- Medical/Surgical Instruments
- Urological Materials and Devices
- GI Endoscopes
- Cotton Products for Medical Use
Division IV: Tissue Engineered Medical Products

- Classification and Terminology for TEMPs
- Biomaterials and Biomolecules
- Cells and Tissue Engineered Constructs
- Assessment
- Safety
Division IX: Administration

- Executive
- Awards
- Planning
- US TAG ISO/TC 150
- Finance
- ISO/TC 168
- ISO/TC 194
- Editorial
Technical Committees are balanced. There are no more Producer voters than User & General Interest voters. This ensures the development of fair, consensus, technically sound documents. It protects the documents from bias.
SEC. 204. DEVICE STANDARDS.

“….the Secretary shall, by publication in the Federal Register, recognize all or part of an appropriate standard established by a nationally or internationally recognized standard development organization for which a person may submit a declaration of conformity in order to meet a premarket submission requirement or other requirement under this Act to which such standard is applicable”.
Types of ASTM Documents

- Classification
- Guide
- Practice
- Specification
- Terminology
- Test Method
ASTM F 561-97

- Practice for Retrieval and Analysis of Implanted Medical Devices, and Associated Tissues
ASTM F 1877-98

- Standard Practice for Characterization of Particles
ASTM F 1875-98

- Standard Practice for Fretting Corrosion Testing of Modular Implant Interfaces: Hip Femoral Head-Bore and Cone Taper Interface
SERUM CHROMIUM

Grp 1: Hybrid
Grp 2: Cementless CoCr
Grp 3: Cementless Ti
Grp 4: Control
1/2 D.L.

*Different than controls (p<0.05)
(P<0.04)

(P<0.02)
ASTM F 1537-00

- Standard Specification for Wrought Cobalt-28 Chromium-6 Molybdenum Alloys for Surgical Implants
Benefits of Standards for Biomedical Engineering Materials and Devices

- Regulatory
- Legal
- Commerce
- Research
- Development
 - Technology Transfer
- Clinical Practice
 - Patient Safety
Acknowledgements

- NIH/NIAMS AR39310
- Crown Family Chair of Orthopaedic Surgery, Rush Medical College
- Zimmer, Inc
- Rush Arthritis and Orthopaedics Institute